	Key
	Math 4
-3	117 LT 12 Learn Check

Name		
	Date	

In this Learning Check, you will be assessed on the following learning goals:

I can use the definition of derivative to compute derivatives

I can use derivatives and their graphs to identify properties of functions

Let f be the function $f(x) = 3x^2 - 2x + 4$. Use the definition of derivative to find f'(x). 1a.

$$f'(x) = \lim_{\Delta x \to 0} 3(x + \Delta x)^{2} - 2(x + \Delta x) + 4 - (3x^{2} - 2x + 4)$$

$$= \lim_{\Delta x \to 0} 3(x^{2} + 2x\Delta x + \Delta x^{2}) - 2x - 2\Delta x + 4 - 3x^{2} + 2x - 4$$

$$= \lim_{\Delta x \to 0} 3(x^{2} + 2x\Delta x + \Delta x^{2}) - 2x - 2\Delta x + 4 - 3x^{2} + 2x - 4$$

= $\lim_{\Delta x \to 0} \frac{3x^2 + 6x + 3\Delta x^2 +$

1b

Is f increasing or decreasing when x = -8? Justify your answer. 1c.

I is decreasing. The slope of the taget line at that point is negative.

- A projectile follows along a path given by the formula $h(t) = 480t 16t^2$. The derivative 3. function for h(t) is h'(t) = 480 - 32t (t in seconds, h(t) in feet). Answer the below questions based on the functions.
- Find the instantaneous velocity when $\overset{\leftarrow}{k} = 20$. Explain what your answer means about the 3a. h'(20)=480-32(20) = 760 - sHeight is Decreusing projectile.

The projectile is traveling clown at 160 fels after 20

Find the instantaneous velocity when $\xi = 8$. Explain what your answer means about the 3b.

N'(8)=480-32(8) = 224 thight is increasing After 8 seconds, the projectile is traveling special at a social of 224 ft/suc.

Find the instantaneous velocity when $\stackrel{\bigstar}{=} 15$. Explain what your answer means about the 3c.

hi (15) = 480-32(15) =0 - Projectile at maximum height After 15 seconds, the projectile is string Still. Below is a graph of f'(x) (the derivative function). Use the graph to answer the below questions.

Remember, the derivative is the instantaneous rate of change at a specific x-value.

On what intervals (use A, B, C, D, and E) is the graph of f(x) increasing? 5.

> (A,C) (E,∞) Between A-C To the right of E

On what intervals (use A, B, C, D, and E) is the graph of f(x) decreasing? 6.

 $(-\infty,A)$ (c,p)

What do the x-intercepts of the above graph of f'(x) tell you about the graph of f(x)? **7**₽

f(x) has max or min points at those three x-values. Specifically, Minimums 4+ A TE; maximum at C.

Use the graph below to estimate the value of the derivative at the given points.

8.
$$x = -1$$

$$g'(-1) = 0$$

$$x=1$$

$$\xi(1) = \frac{3}{3}$$